重新看了廖雪峰的Python,发现之前学过的后来都没用过导致记忆模糊哦,所以搬运过来了

一、字符串与编码

1.1 编码格式转换

在最新的Python 3版本中,字符串是以Unicode编码的,也就是说,Python的字符串支持多语言。对于单个字符的编码,Python提供了ord()函数来获取字符的整数表示,chr()函数把编码转换成对应的字符。

1
2
3
4
5
6
7
8
>>> ord('A')
65
>>> ord('中')
20013
>>> chr('66')
`B`
>>> chr(25991) #这里25991为十进制
'文'

如果知道字符的整数编码,还可以用十六进制写str,两种写法等价。

1
2
>>> '\u4e2d\u6587'
'中文'

由于Python的字符串类型是str,在内存中以Unicode表示,一个字符对应若干个字节。如果要在网络上传输,或者保存到磁盘上,就需要把str变为以字节为单位的bytes。Python对bytes类型的数据用带b前缀的单引号或双引号表示。

1
x = b'ABC'

注意区分ABCb'ABC',前者是str,后者虽然内容显示得和前者一样,但是bytes的每个字符都只占用一个字节。以Unicode表示的str通过encode()方法可以编码为指定的bytes

1
2
3
4
5
6
7
8
>>> 'ABC'.encode('ascii')
b'ABC'
>>> '中文'.encode('utf-8')
b'\xe4\xb8\xad\xe6\x96\x87'
>>> '中文'.encode('ascii')
Traceback (most recent call last):
File "<stdin>", line 1, in <module>
UnicodeEncodeError: 'ascii' codec can't encode characters in position 0-1: ordinal not in range(128)

纯英文的str可以用ASCII编码为bytes,内容是一样的,含有中文的str可以用UTF-8编码为bytes。含有中文的str无法用ASCII编码,因为中文编码的范围超过了ASCII编码的范围,Python会报错。

bytes中,无法显示为ASCII字符的字节,用\x##显示。反过来,如果我们从网络或磁盘上读取了字节流,那么读到的数据就是bytes。要把bytes变为str,就需要用decode()方法。

1
2
3
4
>>> b'ABC'.decode('ascii')
'ABC'
>>> b'\xe4\xb8\xad\xe6\x96\x87'.decode('utf-8')
'中文'

如果bytes中包含无法解码的字节,decode()方法会报错

1
2
3
4
>>> b'\xe4\xb8\xad\xff'.decode('utf-8')
Traceback (most recent call last):
...
UnicodeDecodeError: 'utf-8' codec can't decode byte 0xff in position 3: invalid start byte

如果bytes中只有一小部分无效的字节,可以传入errors='ignore'忽略错误的字节

1
2
>>> b'\xe4\xb8\xad\xff'.decode('utf-8', errors='ignore')
'中'

在操作字符串时,我们经常遇到strbytes的互相转换。为了避免乱码问题,应当始终坚持使用UTF-8编码对strbytes进行转换。

1.2 申明编码格式

由于Python源代码也是一个文本文件,所以,当你的源代码中包含中文的时候,在保存源代码时,就需要务必指定保存为UTF-8编码。当Python解释器读取源代码时,为了让它按UTF-8编码读取,我们通常在文件开头写上这两行:

1
2
#!/usr/bin/env python3
# -*- coding: utf-8 -*-

第一行注释是为了告诉Linux/OS X系统,这是一个Python可执行程序,Windows系统会忽略这个注释;

第二行注释是为了告诉Python解释器,按照UTF-8编码读取源代码,否则,你在源代码中写的中文输出可能会有乱码。

申明了UTF-8编码并不意味着你的.py文件就是UTF-8编码的,必须并且要确保文本编辑器正在使用UTF-8 without BOM编码:

1.3 格式化输出

%占位符

在Python中,采用的格式化方式和C语言是一致的,用%实现,举例如下:

1
2
3
4
>>> 'Hello, %s' % 'world'
'Hello, world'
>>> 'Hi, %s, you have $%d.' % ('Michael', 1000000)
'Hi, Michael, you have $1000000.'

你可能猜到了,%运算符就是用来格式化字符串的。在字符串内部,%s表示用字符串替换,%d表示用整数替换,有几个%?占位符,后面就跟几个变量或者值,顺序要对应好。如果只有一个%?,括号可以省略。

常见的占位符有:

占位符 替换内容
%d 整数
%f 浮点数
%s 字符串
%x 十六进制整数

其中,格式化整数和浮点数还可以指定是否补0和整数与小数的位数

1
2
print('%2d-%02d' % (3, 1)) #3-01
print('%.2f' % 3.1415926) #3.14

如果你不太确定应该用什么,%s永远起作用,它会把任何数据类型转换为字符串

1
2
>>> 'Age: %s. Gender: %s' % (25, True)
'Age: 25. Gender: True'

有些时候,字符串里面的%是一个普通字符,用%%来表示一个%

1
2
>>> 'growth rate: %d %%' % 7
'growth rate: 7 %'

format()

另一种格式化字符串的方法是使用字符串的format()方法,它会用传入的参数依次替换字符串内的占位符{0}{1}……,不过这种方式写起来比%要麻烦得多:

1
2
>>> 'Hello, {0}, 成绩提升了 {1:.1f}%'.format('小明', 17.125)
'Hello, 小明, 成绩提升了 17.1%'

f-string

最后一种格式化字符串的方法是使用以f开头的字符串,称之为f-string,它和普通字符串不同之处在于,字符串如果包含{xxx},就会以对应的变量替换

1
2
3
4
>>> r = 2.5
>>> s = 3.14 * r ** 2
>>> print(f'The area of a circle with radius {r} is {s:.2f}')
The area of a circle with radius 2.5 is 19.62

上述代码中,{r}被变量r的值替换,{s:.2f}被变量s的值替换,并且:后面的.2f指定了格式化参数(即保留两位小数),因此,{s:.2f}的替换结果是19.62

二、列表、元组、字典

2.1 列表

list是一个可变的有序表,所以,可以往list中追加元素到末尾:

1
2
3
>>> classmates.append('Adam')
>>> classmates
['Michael', 'Bob', 'Tracy', 'Adam']

也可以把元素插入到指定的位置,比如索引号为1的位置:

1
2
3
>>> classmates.insert(1, 'Jack')
>>> classmates
['Michael', 'Jack', 'Bob', 'Tracy', 'Adam']

要删除list末尾的元素,用pop()方法:

1
2
3
4
>>> classmates.pop()
'Adam'
>>> classmates
['Michael', 'Jack', 'Bob', 'Tracy']

要删除指定位置的元素,用pop(i)方法,其中i是索引位置:

1
2
3
4
>>> classmates.pop(1)
'Jack'
>>> classmates
['Michael', 'Bob', 'Tracy']

要把某个元素替换成别的元素,可以直接赋值给对应的索引位置:

1
2
3
>>> classmates[1] = 'Sarah'
>>> classmates
['Michael', 'Sarah', 'Tracy']

list里面的元素的数据类型也可以不同,比如:

1
>>> L = ['Apple', 123, True]

list元素也可以是另一个list,比如:

1
2
3
>>> s = ['python', 'java', ['asp', 'php'], 'scheme']
>>> len(s)
4

要拿到'php'可以写s[2][1],因此s可以看成是一个二维数组,类似的还有三维、四维……数组,不过很少用到。

2.2 元组

要定义一个只有1个元素的tuple,如果你这么定义:

1
2
3
>>> t = (1)
>>> t
1

定义的不是tuple,是1这个数!这是因为括号()既可以表示tuple,又可以表示数学公式中的小括号,这就产生了歧义,因此,Python规定,这种情况下,按小括号进行计算,计算结果自然是1

所以,只有1个元素的tuple定义时必须加一个逗号,,来消除歧义:

1
2
3
>>> t = (1,)
>>> t
(1,)

Python在显示只有1个元素的tuple时,也会加一个逗号,,以免你误解成数学计算意义上的括号。

“可变的”tuple:

1
2
3
4
5
>>> t = ('a', 'b', ['A', 'B'])
>>> t[2][0] = 'X'
>>> t[2][1] = 'Y'
>>> t
('a', 'b', ['X', 'Y'])

2.3 字典

把数据放入dict的方法,除了初始化时指定外,还可以通过key放入:

1
2
3
>>> d['Adam'] = 67
>>> d['Adam']
67

由于一个key只能对应一个value,所以,多次对一个key放入value,后面的值会把前面的值冲掉:

1
2
3
4
5
6
>>> d['Jack'] = 90
>>> d['Jack']
90
>>> d['Jack'] = 88
>>> d['Jack']
88

如果key不存在,dict就会报错:

1
2
3
4
>>> d['Thomas']
Traceback (most recent call last):
File "<stdin>", line 1, in <module>
KeyError: 'Thomas'

要避免key不存在的错误,有两种办法,一是通过in判断key是否存在:

1
2
>>> 'Thomas' in d
False

二是通过dict提供的get()方法,如果key不存在,可以返回None,或者自己指定的value:

1
2
3
>>> d.get('Thomas')
>>> d.get('Thomas', -1)
-1

注意:返回None的时候Python的交互环境不显示结果。

要删除一个key,用pop(key)方法,对应的value也会从dict中删除:

1
2
3
4
>>> d.pop('Bob')
75
>>> d
{'Michael': 95, 'Tracy': 85}

请务必注意,dict内部存放的顺序和key放入的顺序是没有关系的。dict可以用在需要高速查找的很多地方,在Python代码中几乎无处不在,正确使用dict非常重要,需要牢记的第一条就是dict的key必须是不可变对象

这是因为dict根据key来计算value的存储位置,如果每次计算相同的key得出的结果不同,那dict内部就完全混乱了。这个通过key计算位置的算法称为哈希算法(Hash)

要保证hash的正确性,作为key的对象就不能变。在Python中,字符串、整数等都是不可变的,因此,可以放心地作为key。而list是可变的,就不能作为key:

1
2
3
4
5
>>> key = [1, 2, 3]
>>> d[key] = 'a list'
Traceback (most recent call last):
File "<stdin>", line 1, in <module>
TypeError: unhashable type: 'list'

2.4 集合

set和dict类似,也是一组key的集合,但不存储value。由于key不能重复,所以,在set中,没有重复的key。

要创建一个set,需要提供一个list作为输入集合:

1
2
3
>>> s = set([1, 2, 3])
>>> s
{1, 2, 3}

注意,传入的参数[1, 2, 3]是一个list,而显示的{1, 2, 3}只是告诉你这个set内部有1,2,3这3个元素,显示的顺序也不表示set是有序的。。

重复元素在set中自动被过滤:

1
2
3
>>> s = set([1, 1, 2, 2, 3, 3])
>>> s
{1, 2, 3}

通过add(key)方法可以添加元素到set中,可以重复添加,但不会有效果:

1
2
3
4
5
6
>>> s.add(4)
>>> s
{1, 2, 3, 4}
>>> s.add(4)
>>> s
{1, 2, 3, 4}

通过remove(key)方法可以删除元素:

1
2
3
>>> s.remove(4)
>>> s
{1, 2, 3}

set可以看成数学意义上的无序和无重复元素的集合,因此,两个set可以做数学意义上的交集、并集等操作

1
2
3
4
5
6
>>> s1 = set([1, 2, 3])
>>> s2 = set([2, 3, 4])
>>> s1 & s2
{2, 3}
>>> s1 | s2
{1, 2, 3, 4}

set和dict的唯一区别仅在于没有存储对应的value,但是,set的原理和dict一样,所以,同样不可以放入可变对象,因为无法判断两个可变对象是否相等,也就无法保证set内部“不会有重复元素”。试试把list放入set,看看是否会报错。

1
2
3
4
>>> a = ['c', 'b', 'a']
>>> a.sort()
>>> a
['a', 'b', 'c']
1
2
3
4
5
6
>>> a = 'abc'
>>> b = a.replace('a', 'A')
>>> b
'Abc'
>>> a
'abc'

三、一些内置函数

3.1 isinstance()

数据类型检查可以用内置函数isinstance()实现:

1
2
3
4
5
6
7
def my_abs(x):
if not isinstance(x, (int, float)):
raise TypeError('bad operand type')
if x >= 0:
return x
else:
return -x

3.2 默认参数

默认参数很有用,但使用不当,也会掉坑里。默认参数有个最大的坑,演示如下:

先定义一个函数,传入一个list,添加一个END再返回:

1
2
3
def add_end(L=[]):
L.append('END')
return L

当你正常调用时,结果似乎不错:

1
2
3
4
>>> add_end([1, 2, 3])
[1, 2, 3, 'END']
>>> add_end(['x', 'y', 'z'])
['x', 'y', 'z', 'END']

当你使用默认参数调用时,一开始结果也是对的:

1
2
>>> add_end()
['END']

但是,再次调用add_end()时,结果就不对了:

1
2
3
4
>>> add_end()
['END', 'END']
>>> add_end()
['END', 'END', 'END']

很多初学者很疑惑,默认参数是[],但是函数似乎每次都“记住了”上次添加了'END'后的list。

原因解释如下:

Python函数在定义的时候,默认参数L的值就被计算出来了,即[],因为默认参数L也是一个变量,它指向对象[],每次调用该函数,如果改变了L的内容,则下次调用时,默认参数的内容就变了,不再是函数定义时的[]了。

定义默认参数要牢记一点:默认参数必须指向不变对象!

要修改上面的例子,我们可以用None这个不变对象来实现:

1
2
3
4
5
def add_end(L=None):
if L is None:
L = []
L.append('END')
return L

现在,无论调用多少次,都不会有问题:

1
2
3
4
>>> add_end()
['END']
>>> add_end()
['END']

为什么要设计strNone这样的不变对象呢?因为不变对象一旦创建,对象内部的数据就不能修改,这样就减少了由于修改数据导致的错误。此外,由于对象不变,多任务环境下同时读取对象不需要加锁,同时读一点问题都没有。我们在编写程序时,如果可以设计一个不变对象,那就尽量设计成不变对象。

3.3 可变参数

在Python函数中,还可以定义可变参数。顾名思义,可变参数就是传入的参数个数是可变的,可以是1个、2个到任意个,还可以是0个。

我们以数学题为例子,给定一组数字a,b,c……,请计算a2 + b2 + c2 + ……。

要定义出这个函数,我们必须确定输入的参数。由于参数个数不确定,我们首先想到可以把a,b,c……作为一个list或tuple传进来,这样,函数可以定义如下:

1
2
3
4
5
def calc(numbers):
sum = 0
for n in numbers:
sum = sum + n * n
return sum

但是调用的时候,需要先组装出一个list或tuple:

1
2
3
4
>>> calc([1, 2, 3])
14
>>> calc((1, 3, 5, 7))
84

如果利用可变参数,调用函数的方式可以简化成这样:

1
2
3
4
>>> calc(1, 2, 3)
14
>>> calc(1, 3, 5, 7)
84

所以,我们把函数的参数改为可变参数:

1
2
3
4
5
def calc(*numbers):
sum = 0
for n in numbers:
sum = sum + n * n
return sum

定义可变参数和定义一个list或tuple参数相比,仅仅在参数前面加了一个*号。在函数内部,参数numbers接收到的是一个tuple,因此,函数代码完全不变。但是,调用该函数时,可以传入任意个参数,包括0个参数:

1
2
3
4
>>> calc(1, 2)
5
>>> calc()
0

如果已经有一个list或者tuple,要调用一个可变参数怎么办?可以这样做:

1
2
3
>>> nums = [1, 2, 3]
>>> calc(nums[0], nums[1], nums[2])
14

这种写法当然是可行的,问题是太繁琐,所以Python允许你在list或tuple前面加一个*号,把list或tuple的元素变成可变参数传进去:

1
2
3
>>> nums = [1, 2, 3]
>>> calc(*nums)
14

*nums表示把nums这个list的所有元素作为可变参数传进去。这种写法相当有用,而且很常见。

3.4 关键字参数

可变参数允许你传入0个或任意个参数,这些可变参数在函数调用时自动组装为一个tuple。而关键字参数允许你传入0个或任意个含参数名的参数,这些关键字参数在函数内部自动组装为一个dict。请看示例:

1
2
def person(name, age, **kw):
print('name:', name, 'age:', age, 'other:', kw)

函数person除了必选参数nameage外,还接受关键字参数kw。在调用该函数时,可以只传入必选参数:

1
2
>>> person('Michael', 30)
name: Michael age: 30 other: {}

也可以传入任意个数的关键字参数:

1
2
3
4
>>> person('Bob', 35, city='Beijing')
name: Bob age: 35 other: {'city': 'Beijing'}
>>> person('Adam', 45, gender='M', job='Engineer')
name: Adam age: 45 other: {'gender': 'M', 'job': 'Engineer'}

关键字参数有什么用?它可以扩展函数的功能。比如,在person函数里,我们保证能接收到nameage这两个参数,但是,如果调用者愿意提供更多的参数,我们也能收到。试想你正在做一个用户注册的功能,除了用户名和年龄是必填项外,其他都是可选项,利用关键字参数来定义这个函数就能满足注册的需求。

和可变参数类似,也可以先组装出一个dict,然后,把该dict转换为关键字参数传进去:

1
2
3
>>> extra = {'city': 'Beijing', 'job': 'Engineer'}
>>> person('Jack', 24, city=extra['city'], job=extra['job'])
name: Jack age: 24 other: {'city': 'Beijing', 'job': 'Engineer'}

当然,上面复杂的调用可以用简化的写法:

1
2
3
>>> extra = {'city': 'Beijing', 'job': 'Engineer'}
>>> person('Jack', 24, **extra)
name: Jack age: 24 other: {'city': 'Beijing', 'job': 'Engineer'}

**extra表示把extra这个dict的所有key-value用关键字参数传入到函数的**kw参数,kw将获得一个dict,注意kw获得的dict是extra的一份拷贝,对kw的改动不会影响到函数外的extra

3.5 命名关键字参数

对于关键字参数,函数的调用者可以传入任意不受限制的关键字参数。至于到底传入了哪些,就需要在函数内部通过kw检查。

仍以person()函数为例,我们希望检查是否有cityjob参数:

1
2
3
4
5
6
7
8
def person(name, age, **kw):
if 'city' in kw:
# 有city参数
pass
if 'job' in kw:
# 有job参数
pass
print('name:', name, 'age:', age, 'other:', kw)

但是调用者仍可以传入不受限制的关键字参数:

1
>>> person('Jack', 24, city='Beijing', addr='Chaoyang', zipcode=123456)

如果要限制关键字参数的名字,就可以用命名关键字参数,例如,只接收cityjob作为关键字参数。这种方式定义的函数如下:

1
2
def person(name, age, *, city, job):
print(name, age, city, job)

和关键字参数**kw不同,命名关键字参数需要一个特殊分隔符**后面的参数被视为命名关键字参数。

调用方式如下:

1
2
>>> person('Jack', 24, city='Beijing', job='Engineer')
Jack 24 Beijing Engineer

如果函数定义中已经有了一个可变参数,后面跟着的命名关键字参数就不再需要一个特殊分隔符*了:

1
2
def person(name, age, *args, city, job):
print(name, age, args, city, job)

命名关键字参数必须传入参数名,这和位置参数不同。如果没有传入参数名,调用将报错:

1
2
3
4
>>> person('Jack', 24, 'Beijing', 'Engineer')
Traceback (most recent call last):
File "<stdin>", line 1, in <module>
TypeError: person() missing 2 required keyword-only arguments: 'city' and 'job'

由于调用时缺少参数名cityjob,Python解释器把前两个参数视为位置参数,后两个参数传给*args,但缺少命名关键字参数导致报错。

命名关键字参数可以有缺省值,从而简化调用:

1
2
def person(name, age, *, city='Beijing', job):
print(name, age, city, job)

由于命名关键字参数city具有默认值,调用时,可不传入city参数:

1
2
>>> person('Jack', 24, job='Engineer')
Jack 24 Beijing Engineer

使用命名关键字参数时,要特别注意,如果没有可变参数,就必须加一个*作为特殊分隔符。如果缺少*,Python解释器将无法识别位置参数和命名关键字参数:

1
2
3
def person(name, age, city, job):
# 缺少 *,city和job被视为位置参数
pass

3.6 参数组合

在Python中定义函数,可以用必选参数、默认参数、可变参数、关键字参数和命名关键字参数,这5种参数都可以组合使用。但是请注意,参数定义的顺序必须是:必选参数、默认参数、可变参数、命名关键字参数和关键字参数。