时域采样和频域采样-MATLAB学习

一、采样原理和方法
时域采样定理的要点是:
- 对模拟信号$x_a(t)$以间隔T进行时域等间隔理想采样,形成的采样信号的频谱$X(j\Omega)$是原模拟信号频谱$X_a(j\Omega)$以采样角频率${\Omega}_s=\frac{2\pi}{T}$为周期进行周期延拓。公式为:
- 奈奎斯特采样定理:采样频率${\Omega}_s$必须大于等于模拟信号最高频率的两倍以上,才能使采样信号的频谱不产生频率谱混叠。
上式说明理想采样信号的傅里叶变换可用相应的采样序列的傅里叶变换得到,只要将自变量$w$用${\Omega}T$替代即可。
结论:时域采样频谱周期延拓,频域采样时域周期延拓。
二、验证采样原理
2.1 时域采样定理的验证
给定模拟信号,$xa(t)=Ae^{-{\alpha}t}sin({\Omega}{0}t)u(t)$,式中$A=444.128,\alpha=50\sqrt{2}\pi,\Omega_0 = 50\sqrt{2}{\pi} rad/s$,其幅频特性曲线为:
1 | A = 444.128; |
练习:近似绘制$X(n)=R_4(n)$在$(0,2\pi)$上的幅频响应曲线$(|FT[x(n)]|)$:
1 | x = [1 1 1 1]; |
注意:在这段MATLAB代码中,plot函数中传入参数2*k/N的目的是为了绘制频谱图。在频谱图中,横轴表示频率,纵轴表示信号的幅度。频率的范围是从0到π,对应着k的范围从0到N-1。通过将k除以N,可以将频率范围映射到0到1之间。然后乘以2,可以将频率范围映射到0到2之间,这样就可以在横轴上正确显示频率的范围。因此,传入参数2*k/N的意义是对频率进行适当的缩放,以便正确显示频谱图。
三、频率采样理论的验证
给定信号如下:
1 | %数字信号处理-实验5-频域域采样理论论证 |
本博客所有文章除特别声明外,均采用 CC BY-NC-SA 4.0 许可协议。转载请注明来自 GanSer!
评论
匿名评论
✅ 你无需删除空行,直接评论以获取最佳展示效果