Python细节小小知识点(六)
一、回调模式和轮询模式
你说“来个汉堡”,服务员告诉你,汉堡需要等5分钟,你可以先去逛商场,等做好了,我们再通知你,这样你可以立刻去干别的事情(逛商场),这是异步IO。很明显,使用异步IO来编写程序性能会远远高于同步IO,但是异步IO的缺点是编程模型复杂。想想看,你得知道什么时候通知你“汉堡做好了”,而通知你的方法也各不相同。**如果是服务员跑过来找到你,这是回调模式,如果服务员发短信通知你,你就得不停地检查手机,这是轮询模式。**总之,异步IO的复杂度远远高于同步IO。
二、读写文件
2.1 二进制文件
前面讲的默认都是读取文本文件,并且是UTF-8编码的文本文件。要读取二进制文件,比如图片、视频等等,用'rb'
模式打开文件即可:
1 | open('/Users/michael/test.jpg', 'rb') f = |
2.2 字符编码
要读取非UTF-8编码的文本文件,需要给open()
函数传入encoding
参数,例如,读取GBK编码的文件:
1 | open('/Users/michael/gbk.txt', 'r', encoding='gbk') f = |
遇到有些编码不规范的文件,你可能会遇到UnicodeDecodeError
,因为在文本文件中可能夹杂了一些非法编码的字符。遇到这种情况,open()
函数还接收一个errors
参数,表示如果遇到编码错误后如何处理。最简单的方式是直接忽略:
1 | open('/Users/michael/gbk.txt', 'r', encoding='gbk', errors='ignore') f = |
2.3 StringIO
很多时候,数据读写不一定是文件,也可以在内存中读写。
StringIO顾名思义就是在内存中读写str。
要把str写入StringIO,我们需要先创建一个StringIO,然后,像文件一样写入即可:
1 | from io import StringIO |
getvalue()
方法用于获得写入后的str。
要读取StringIO,可以用一个str初始化StringIO,然后,像读文件一样读取:
1 | from io import StringIO |
2.4 BytesIO
StringIO操作的只能是str,如果要操作二进制数据,就需要使用BytesIO。
BytesIO实现了在内存中读写bytes,我们创建一个BytesIO,然后写入一些bytes:
1 | from io import BytesIO |
请注意,写入的不是str,而是经过UTF-8编码的bytes。
和StringIO类似,可以用一个bytes初始化BytesIO,然后,像读文件一样读取:
1 | from io import BytesIO |
StringIO和BytesIO是在内存中操作str和bytes的方法,使得和读写文件具有一致的接口。
三、操作文件和目录
如果我们要操作文件、目录,可以在命令行下面输入操作系统提供的各种命令来完成。比如dir
、cp
等命令。
如果要在Python程序中执行这些目录和文件的操作怎么办?其实操作系统提供的命令只是简单地调用了操作系统提供的接口函数,Python内置的os
模块也可以直接调用操作系统提供的接口函数。
打开Python交互式命令行,我们来看看如何使用os
模块的基本功能:
1 | import os |
如果是posix
,说明系统是Linux
、Unix
或Mac OS X
,如果是nt
,就是Windows
系统。
要获取详细的系统信息,可以调用uname()
函数:
1 | os.uname() |
注意uname()
函数在Windows上不提供,也就是说,os
模块的某些函数是跟操作系统相关的。
3.1 环境变量
在操作系统中定义的环境变量,全部保存在os.environ
这个变量中,可以直接查看:
1 | os.environ |
要获取某个环境变量的值,可以调用os.environ.get('key')
:
1 | 'PATH') os.environ.get( |
3.2 操作文件和目录
操作文件和目录的函数一部分放在os
模块中,一部分放在os.path
模块中,这一点要注意一下。查看、创建和删除目录可以这么调用:
1 | # 查看当前目录的绝对路径: |
把两个路径合成一个时,不要直接拼字符串,而要通过os.path.join()
函数,这样可以正确处理不同操作系统的路径分隔符。在Linux/Unix/Mac下,os.path.join()
返回这样的字符串:
1 | part-1/part-2 |
而Windows下会返回这样的字符串:
1 | part-1\part-2 |
同样的道理,要拆分路径时,也不要直接去拆字符串,而要通过os.path.split()
函数,这样可以把一个路径拆分为两部分,后一部分总是最后级别的目录或文件名:
1 | '/Users/michael/testdir/file.txt') os.path.split( |
os.path.splitext()
可以直接让你得到文件扩展名,很多时候非常方便:
1 | '/path/to/file.txt') os.path.splitext( |
这些合并、拆分路径的函数并不要求目录和文件要真实存在,它们只对字符串进行操作。
文件操作使用下面的函数。假定当前目录下有一个test.txt
文件:
1 | # 对文件重命名: |
但是复制文件的函数居然在os
模块中不存在!原因是复制文件并非由操作系统提供的系统调用。理论上讲,我们通过上一节的读写文件可以完成文件复制,只不过要多写很多代码。
幸运的是shutil
模块提供了copyfile()
的函数,你还可以在shutil
模块中找到很多实用函数,它们可以看做是os
模块的补充。
最后看看如何利用Python的特性来过滤文件。比如我们要列出当前目录下的所有目录,只需要一行代码:
1 | for x in os.listdir('.') if os.path.isdir(x)] [x |
要列出所有的.py
文件,也只需一行代码:
1 | for x in os.listdir('.') if os.path.isfile(x) and os.path.splitext(x)[1]=='.py'] [x |
3.3 序列化
在程序运行的过程中,所有的变量都是在内存中,比如,定义一个dict:
1 | d = dict(name='Bob', age=20, score=88) |
可以随时修改变量,比如把name
改成'Bill'
,但是一旦程序结束,变量所占用的内存就被操作系统全部回收。如果没有把修改后的'Bill'
存储到磁盘上,下次重新运行程序,变量又被初始化为'Bob'
。
我们把变量从内存中变成可存储或传输的过程称之为序列化,在Python中叫pickling,在其他语言中也被称之为serialization,marshalling,flattening等等,都是一个意思。
序列化之后,就可以把序列化后的内容写入磁盘,或者通过网络传输到别的机器上。
反过来,把变量内容从序列化的对象重新读到内存里称之为反序列化,即unpickling。
Python提供了pickle
模块来实现序列化。
首先,我们尝试把一个对象序列化并写入文件:
1 | >>> import pickle |
pickle.dumps()
方法把任意对象序列化成一个bytes
,然后,就可以把这个bytes
写入文件。或者用另一个方法pickle.dump()
直接把对象序列化后写入一个file-like Object:
1 | >>> f = open('dump.txt', 'wb') |
看看写入的dump.txt
文件,一堆乱七八糟的内容,这些都是Python保存的对象内部信息。
当我们要把对象从磁盘读到内存时,可以先把内容读到一个bytes
,然后用pickle.loads()
方法反序列化出对象,也可以直接用pickle.load()
方法从一个file-like Object
中直接反序列化出对象。我们打开另一个Python命令行来反序列化刚才保存的对象:
1 | >>> f = open('dump.txt', 'rb') |
变量的内容又回来了!
当然,这个变量和原来的变量是完全不相干的对象,它们只是内容相同而已。
Pickle的问题和所有其他编程语言特有的序列化问题一样,就是它只能用于Python,并且可能不同版本的Python彼此都不兼容,因此,只能用Pickle保存那些不重要的数据,不能成功地反序列化也没关系。
3.4 JSON
如果我们要在不同的编程语言之间传递对象,就必须把对象序列化为标准格式,比如XML,但更好的方法是序列化为JSON,因为JSON表示出来就是一个字符串,可以被所有语言读取,也可以方便地存储到磁盘或者通过网络传输。JSON不仅是标准格式,并且比XML更快,而且可以直接在Web页面中读取,非常方便。
JSON表示的对象就是标准的JavaScript语言的对象,JSON和Python内置的数据类型对应如下:
JSON类型 | Python类型 |
---|---|
{} | dict |
[] | list |
“string” | str |
1234.56 | int或float |
true/false | True/False |
null | None |
Python内置的json
模块提供了非常完善的Python对象到JSON格式的转换。我们先看看如何把Python对象变成一个JSON:
1 | >>> import json |
dumps()
方法返回一个str
,内容就是标准的JSON。类似的,dump()
方法可以直接把JSON写入一个file-like Object
。
要把JSON反序列化为Python对象,用loads()
或者对应的load()
方法,前者把JSON的字符串反序列化,后者从file-like Object
中读取字符串并反序列化:
1 | >>> json_str = '{"age": 20, "score": 88, "name": "Bob"}' |
由于JSON标准规定JSON编码是UTF-8,所以我们总是能正确地在Python的str
与JSON的字符串之间转换。
3.5 JSON进阶
Python的dict
对象可以直接序列化为JSON的{}
,不过,很多时候,我们更喜欢用class
表示对象,比如定义Student
类,然后序列化:
1 | import json |
运行代码,毫不留情地得到一个TypeError
:
1 | Traceback (most recent call last): |
错误的原因是Student
对象不是一个可序列化为JSON的对象。
如果连class
的实例对象都无法序列化为JSON,这肯定不合理!
别急,我们仔细看看dumps()
方法的参数列表,可以发现,除了第一个必须的obj
参数外,dumps()
方法还提供了一大堆的可选参数:
https://docs.python.org/3/library/json.html#json.dumps
这些可选参数就是让我们来定制JSON序列化。前面的代码之所以无法把Student
类实例序列化为JSON,是因为默认情况下,dumps()
方法不知道如何将Student
实例变为一个JSON的{}
对象。
可选参数default
就是把任意一个对象变成一个可序列为JSON的对象,我们只需要为Student
专门写一个转换函数,再把函数传进去即可:
1 | def student2dict(std): |
这样,Student
实例首先被student2dict()
函数转换成dict
,然后再被顺利序列化为JSON:
1 | >>> print(json.dumps(s, default=student2dict)) |
不过,下次如果遇到一个Teacher
类的实例,照样无法序列化为JSON。我们可以偷个懒,把任意class
的实例变为dict
:
1 | print(json.dumps(s, default=lambda obj: obj.__dict__)) |
因为通常class
的实例都有一个__dict__
属性,它就是一个dict
,用来存储实例变量。也有少数例外,比如定义了__slots__
的class。
同样的道理,如果我们要把JSON反序列化为一个Student
对象实例,loads()
方法首先转换出一个dict
对象,然后,我们传入的object_hook
函数负责把dict
转换为Student
实例:
1 | def dict2student(d): |
运行结果如下:
1 | >>> json_str = '{"age": 20, "score": 88, "name": "Bob"}' |
打印出的是反序列化的Student
实例对象。